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Abstract. A modification of the Lanczos algorithm is suggested for calculating the frequency 
representations of correlation functions, averaging over the canonical ensemble. The 
problem is reduced to a recursive construction of a set of operators so that the commutator 
of each operator with the Hamiltonian is equal to a linear combination of three operators: 
previous, given and subsequent. As an initial operator of the set the one entering the 
correlation function is used. The coefficients with which the operators enter the linear 
combinations are equal to the elements of the continued fraction representing the correlation 
function. On the basis of the developed algorithm formulae are obtained for the correlation 
function of the system of Frenkel excitons interacting with non-polar optical phonons, 
which describes the absorption spectrum of a dielectric crystal. 

1. Introduction 

The recursion method of calculating the matrix elements of the resolvents of Hamil- 
tonians, based on the Lanczos algorithm (Lanczos 1950, Voevodin and Kuznetsov 
1984), has been shown to be a powerful tool for solving a number of problems (see 
Haydock 1980, Kelly 1980 and references therein, Sherman 1985, 1986). The merits 
of the method are a comparatively small required storage, simplicity and applicability 
to large sparse matrices. The matrix elements of resolvents may be considered as 
frequency representations of time correlation functions with averaging over some pure 
state. It is undoubtedly of interest to generalise this method for the case of averaging 
over the canonical ensemble, incidentally preserving their positive features. The method 
of a continued-fraction expansion of such correlation functions has been found by 
Mori (1965). In this method the continued-fraction elements are calculated with the 
help of recurrence relations which, however, are rather complicated and demand a lot 
of intermediate results to be memorised. Therefore the realisation of this calculation 
scheme encounters a number of difficulties, both in analytical and computer calcula- 
tions, that prevents a large number of continued-fraction elements from being evaluated. 

In this paper, a modification of the Lanczos algorithm is suggested for calculating 
correlation functions with averaging over the canonical ensemble by a recursion method. 
This modification preserves the above mentioned positive features of the algorithm 
and considerably simplifies analytical calculations and computer programs in com- 
parison with the Mori method. The required storage is also essentially reduced. As 
an example of an application of the developed algorithm formulae are deduced for 
the correlation function of the exciton-phonon system, describing the absorption 
spectrum of a dielectric crystal in a wide temperature range. 
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2. A modified Lanczos algorithm 

Let us consider the Laplace transform 

Ro(z) = dt  e-"Ro(t) jam 
of the time correlation function Ro( t )  = (do( t)d;), where the angle brackets denote 
the average over the canonical ensemble with the Hamiltonian H and do is an arbitrary 
operator, do(t) =exp(iHt)d,exp(-iHt), with h = 1. Let us suppose that (dodO+)= 1 
(at (dad,') f 0, 1 this may be achieved by multiplying do by the corresponding 
constant). An operator d l  is determined by the following equation: 

[ H, d o ]  = C Y d ,  + c : d o  

where the coefficients CY and c: are determined by conditions (d,d:) = 0 (hence 
(dodpP:) = 0) and (d,d;> = 1. Analogously, operators d,, n = 2,3 ,  . . . , are introduced 
successively according to the equations 

[ H ,  = (1) 
i=O 

where n + 1 coefficients cy-' are determined by n + 1 conditions 

(dfl4) = & , t *  (2) 
It is easy to see, however, that in the sum (1) only three coefficients, ci- ' ,  c i 1 ;  and 
c:T:, are not equal to zero. Indeed, 

k + l  

c;-I = ( [ H ,  dn-l]d:) = (d,-,[d:, HI) = c*;(d,-,dPp:) 
t = O  

from which, according to equations (2), follows the conclusion made above. From 
this relation it also follows that 

n - 1 -  f n - I  
cn-1  - cn-I  C : - l =  

According to definition (1) the coefficients c:-'  can always be chosen real and positive. 
Such choice is assumed in the following. Thus, 

[H, &I = V , + , d f l + , -  End,, + Vfldn-I 

vo = 0 En = -([M dflId9 vfl =([e ~ , l ~ ; - I )  
r: = 0,1, . . . 

(3) 

where the notations E,, = - c i ,  V, = c : - ,  are introduced. 
Let us show, by using the projection operator technique developed by Mori (1969, 

that the coefficients E,, and V, are the elements of the continued fraction representing 
the correlation function Ro(z). The projection operator P,, on the operator d, is 
determined by the equation 

pflo = (Q4)dr l .  

Time dependences of the operators d,,(t) are introduced by the equations 

dO(0)  = d o  (d /d t )do( t )  = i[H, do(?)] 
(4) 

(d/dt )d, ( t )  = i h' ( 1 - pk)[ H, dn ( t )] dfl (0) = dfl n = 1 , 2 , .  . . 
k = O  
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from which it follows that (d,,( t)dt) = 0 at i = 0, 1 ,  . . . , n - 1 .  d,,( t )  can be presented 
in the form 

d n ( t ) =  Rn(t )dn+dk( t )  ( 5 )  

where R,( t )  = (a,( t)d:) and hence dk( t )  = ( 1  - P,,)d,,( t ) .  An equation determining 
the time evolution of t )  follows from equations (3)-(5): 

which gives 

d,(t)= R,,( t )dn+i  R,,(s)V,,+ldn+,(f- s )  ds. (6) lo' 
By making use of equations (3), (4) and (6) and conditions (2) we find an equation 
determining the correlator R,,( t ) ,  

= i ( & ( t ) [ d ~ ,  HI)=-iE,,R,,(t)- Vi,, R,,(s)R,,,(t-s) ds. lo' 
For the Laplace transform R, , ( z )  this equation is rewritten as 

1 

z+iE,,+ Vi+lRn+l(z) Rfl(z) = 

and 

1 
Ro(z)= 

v: z+iEo+ 
v: z+ iE ,+  v: z + iEz +T 

(7) 

Thus the calculation of the correlator Ro(z) has been reduced to a recursive 
construction of the set of operators {d,} in accordance with algorithm (3) and to the 
determination of the coefficients E, and V,, entering into continued fraction (7) .  In 
practical calculations, it is convenient to choose a suitable basis of operators and to 
decompose the operators d. onto this basis. For instance, such a basis may be 
constructed from creation and annihilation operators (see the next paragraph). The 
coefficients of such a decomposition may be considered as components of a vector 
representing the operator d,,. Expressing the Hamiltonian H in terms of the operators 
of the basis chosen, we represent the commutator in (3) as some procedure accomplished 
on the nth vector components. In the Lanczos algorithm, this procedure corresponds 
to the multiplication of a matrix representing H by a vector (Lanczos 1950, Voevodin 
and Kuznetsov 1984, Haydock 1980). As in the Lanczos algorithm, the sequence of 



572 A VSherman 

E,, and V,, calculations is as follows. By using the nth vector components found in 
the previous calculation step, E ,  is determined and this allows us, in accordance to 
(3), to find the ( n  + 1)th vector components multiplied by V,,,, . The latter value is 
determined from the conditions (d,,+,d;+,) = 1 and the cycle is repeated. As follows 
from (3), the information about only two sets of components describing d, and 
must be stored in the computer memory for the next step of computations. An obvious 
similarity of the two algorithms allows one to call the recurrence procedure (3 )  a 
modified Lanczos algorithm. 

Algorithm (3) may be slightly changed by giving up the conditions (d,,d:) = 1 and 
leaving only (d,,dT) = 0 at n # i. In this case 

[ H ,  d,,] = d,,,, + b ; d ,  + b:-ld, ,- l  

bo,  = O  b: = ( [ H ,  dn]di)(d,,dT)-' = 6; (3') 

b:-l = (d,,d:)(d,, , ) - I .  

Analogously to the previous case one obtains equation (7)  for Rh(z)  = R , ( z ) ( d , d ~ ) - ' ,  
where E, = -b: and V', = b:-l. Recurrent schemes (3) and (3') naturally give the same 
results and the choice of one of them is determined by convenience in a definite situation. 

In comparison with the Mori algorithm, which can be described by 

E ,  and V,, in (7) being determined by (3') (Mori 1965), algorithms (3 )  and (3')  possess 
two basic advantages. To find the ( n + l ) t h  operator in the Mori algorithm the 
information about all ( n  + 1) preceding operators must be stored, while in (3 )  and (3'), 
only two operators, the nth and ( n  - l)th, must be memorised. This leads to a 
considerable economy in the required storage. On the other hand, with the growth of 
n the recurrence relation of the Mori algorithm becomes rapidly complicated and the 
number of operations increases. The character of computations in (3) and (3') is the 
same on each step and these recurrence relations are simpler, which reduces the number 
of operations and simplifies the routine in comparison with the Mori algorithm. 

Taking advantage of the symmetry in a Hamiltonian, in analogy with the Lanczos 
algorithm (Haydock 1980, Sherman 1985,1986), can save time and storage in computa- 
tion. As follows from (3)  and (3'), .f the starting operator do belongs to an irreducible 
representation of the symmetries f H, all the operators d,  appearing in (3 )  and (3') 
belong to the same row of the same irreducible representation. This imposes some 
restrictions on vector components representing d,, (see the next paragraph). The 
continued-fraction elements E ,  and V,, are the same for starting operators correspond- 
ing to different rows of the same irreducible representation. 

By interrupting the computation on the nth step and equating R,(z) to zero one 
approximates continued fraction (7)  by the nth convergent which has n simple poles 
on the imaginary axis. The position of other possible singularities, branch points and 
essential singularities, is determined by the asymptotic behaviour of the coefficients 
E,, and V,, at large n (Haydock 1980). For some problems it can be determined on 
the basis of calculated coefficients or from other physical considerations (Haydock 
1980, Sherman 1986). A number of methods of approximating R , ( z )  have been 
considered by Mori (1965). 
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The algorithm described above can also be used for calculating the Laplace trans- 
forms of the correlators (d( f )%+) ,  where d # %. Note that 

(d(t)%') = f ( {d ( t )+  se(t)}{d++ se'}) 
+$({a (  t )  + ia( r)}{d+ - i%+}) -$( 1 + i ){(d(  t ) . d + ) +  (se( t ) % + ) }  

and the problem is reduced to the calculation of four correlators of the type (.d( l)d+). 

3. A correlation function of the exciton-phonon system 

As an example of an application of the algorithm described above let us consider a 
calculation of a correlation function for a model system with the Hamiltonian 

H = E A  2 U:  U ,  - ( B /  12) E' U + w 2 b: b, + JS7; a: Q ,  ( b ,  + b:) 
n n o  n n 

describing the interaction of Frenkel excitons with non-polar optical phonons in a sc 
crystal. In (8), a: and b: are the creation operators of an exciton and a phonon, 
respectively, on the nth lattice site, is the energy of the exciton band centre counted 
from the ground state of the crystal, B << is the exciton bandwidth, w is the phonon 
frequency, and S<< E+,, the Stokes shift, is the energy gain achieved at the vibrational 
relaxation of a localised excitation in case B = 0. The prime indicates that the summa- 
tion over a proceeds over six vectors of the nearest neighbours of the zero site. We 
are interested in the correlation function 

Ro(z)  = lom dt  e-"(a , ( t )a~)  

where a, = N-'12 Z n  exp(ircn)a, is an exciton annihilation operator with wavevector 
K and N is the number of sites of the periodic crystal region. In particular, &'(a) = 
r- ' Re Ro( -in + q), q + +0, describes an absorption spectrum of an ideal dielectric. 
Here R is the frequency of the absorbing photon, K, its wavevector, which will hereafter 
be supposed to be equal to zero. 

In the situations common for dielectric crystals, exp(-E,/T)<< 1, where T is the 
temperature in energetic units. The terms of the order of or less than this exponent 
will be neglected below. In this approximation, (a,a:) = 1 and the absorption spectrum 
d ( R )  is normalised to unity. Thus we can use algorithm (3), supposing do=a,. It 
is easy to see from (3 )  and (8) that the operators d, can be presented in the form 

d, = N-'12 i c c 
x a L b t + i ,  * * b i + l v b L + m ,  * * * b L + m , .  

c %,",p(h, 4,. . . 3  L; m,, m29 ' .  ., mp) 
v = O  p=O I l J2  .... I ,  ml,m2 ,.... m, L 

( 9 )  

The commutator in (3) leads to the appearance of terms containing the combinations 
a:,a,,a,,, a ~ , a ~ , a m , a , a m , ,  etc, in d.. On the one hand, these terms give contributions 
of the order of or less than exp( T )  into E, and V,, and on the other hand, by a 
commutation with the Hamiltonian, do not give terms of type (9) (containing only 
one exciton annihilation operator) in Therefore these terms are omitted in (9). 
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Substituting (8) and (9) into (3) one finds a recurrence formula for calculating the 
vector components determining d,, 

- 
Vn + 1 g n  + 1, Y,& ( I I  ; f i p  ) = e ( n - v) e( n - v - F ) [ ( v - CL + En - & A I  a n ,  v , p  ( 1" ; m p  ) 

- e ( n -  v - i ) e ( n -  ~ - ~ - i ) v ~ ~ ~ - ~ , ~ , ~ ( i ~ ;  m p ) .  (10) 

For the sake of brevity we have introduced the following shorthand in (10): iv denotes 
v arguments I , ,  f 2 ,  . . . , I ,  - in Bn,",+; analogously iu - U  = I ,  - a ,  I,- a, . . . , I ,  - a ;  I :  = 
11 , . . . *  I i - , , l i + I ,  . . ., I * - I  v ,  v = - f , , - f 2  , . . . ,  - 1 , .  8 ( 1 ) = O a t I < O a n d 8 ( 1 ) = 1 a t 1 ~ 0 .  

As follows from ( lo) ,  the component Bn,,+ are invariant with respect to the 
operations of the symmetry group Oh acting simultaneously on all vectors I ,  and mi 
at the fixed point 0. This conclusions results from the symmetry of the Hamiltonian 
and the initial operator do described by the only components 90,0,0 = 1, and it illustrates 
the symmetry considerations of the previous paragraph. In this connection note that 
with respect to translations operators (9) are characterised by the zero wavevector, as 
is do. In accordance with (9) 9,,, is also invariant with respect to permutations of 
any pair of vectors I ,  as well as of any pair of vectors mi.  These symmetry properties 
allow one to reduce the required storage and the number of operations by memorising 
only non-equal components and multiplicities of their repetitions. 

Using (9), conditions (2) are written in the form 

Here ~ ' = p +  v'- U, p ,  =max(O, v -  v'), ~ ~ = m i n ( n ' - 2 v ' +  v, n- v), a, = 
max(0, v'- v), a2 = min(F', v') and 

/ . L ' ! d ! F ! V !  ( Z +  l )r ' -a$,+a 
f =  ( p ' - a ) ! ( d - a ) ! ( v -  v ' + a ) ! a !  

with i i = [exp(w/ T )  - 1 3 - I .  On deriving ( 1  1 )  it has been taken into account that, in 
the accepted approximation, 

( a L b t + l , .  * * bt+rwbL+m, . . . b L + m p b t s + m L . .  . *  b t ' + m ; b L ' + I I . .  . . bL'+r;a+L') 

= (OlaLa~~lO>Cb~+~, * * bt+l,bL+ml * * * b ~ + m , ,  

x b;,+,;. . . . bt,+,;bL*+,:. . . b L ' + i ; ) L  

where the last brackets denote the averaging with the statistical operator 
exp(-HL/ T)/Sp[exp(-H,/ T)], H L  = w Zn b:b,; 10) is the vacuum state of the exciton 
subsystem. When making use of the Bloch-de Dominicis theorem (Bloch and de 
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Dominicis 1958, Tyablikov 1975), note that due to the symmetry of 9,,,,, with respect 
to permutations of the arguments, all terms arising at the pairing of any a creation 
operators with primed subscript (L'+  m i )  with any cy annihilation operators with 
primed subscripts (L'+ I : ,  the remaining operators of such groups are paired with those 
possessing unprimed subscripts L+Ii and L + m i )  are equal. One only has to count 
the number of such terms. This is easy to do taking into account that there are 
v ! [ a ! ( v  - a)!]-' possibilities to select a operators from the v given and a! possibilities 
for a annihilation and creation operators to be paired. 

By making use of conditions (1 1) in ( lo) ,  after some transformations we find 
n p3 u z  

E, = E A +  1 f 9 n , v s , p , ( f i ; ,  -pv)-u; f i ; ,  
v ,v '=O +=pl  u = u ,  i,? m,m' 

w ( p  - v ) 9 n , v , p ( I ; . - v ' + a ,  TIa-a; iv-vr+u, mps-a) 

+2(A+1)& : 1 f ( p + l )  
v,u'=O p = + ,  a = a ,  i , i  *,#I' 

Analogously, a formula for Vn can be obtained but equations (10)-(12) suffice for 
calculating E, and V,. 

The sequence of computations is as follows. By using the starting value 90,0,0 = 1 
in (12) one finds Eo = - B / 2 .  Equation (10) determines the components 

VI %o,o = 0 V l ~ I , i , O ( ~ )  = V l % , O . l ( ~ )  = -Js;;&%,o, 

and, after insertion into (1 11, it is found that V: = Sw(2A + 1). Proceeding in the same 
way one more pair of elements of fraction (7 )  can be calculated: 

w 4A(A+1) B 2  
w +-. 

2A+ 1 (2A+1)* 24 
El = E A  +- v: = 2(2A + 1)Sw + 

Further analytical calculations are cumbersome and to move forward a computer has 
to be used. 

At T = 0, only the terms with v = U' = cy = 0 give a contribution to ( 1  1) and (12). 
In this connection only the components with v = 0 have to be considered in recurrence 
relation (IO). Note that 9n+l,o,p is only expressed through d,,o,p and 9,-i,,,p. In this 
case, equations (lo)-( 12) are reduced to the formulae obtained earlier (Sherman 1985), 
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on the basis of which the absorption spectra of a crystal at T = 0 has been computed 
(Sherman 1986). The employment of the algorithm developed allows us to obtain the 
equations for the correlator at finite temperatures which are similar and only slightly 
more involved than these formulae. This similarity of basic formulae gives a possibility 
of actually using the same calculation procedure at T # 0 that has been utilised at 
T = 0. This circumstance is a consequence of a similarity of the Lanczos recurrence 
relations to equations (3) and (3’) pointed out above. A calculation of the absorption 
spectra for finite temperatures will be carried out in the forthcoming paper. 
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